Three Research Levels

Lui Lam

San Jose State University, California

任何学科研究的三个层次

经验层次 Empirical

From "conservation of momentum" and a few simple assumptions about the material (without the knowledge that gas are made up of molecules), can derive

唯象层次 Phenomenological

Navier-Stokes 方程:

气体定律:

```
\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right] = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}
```

从下而上层次 Bottom-Up

- 1. 气体运动学理论 [can re-derive the above equation and relate the parameters (p, µ) to molecular properties]
- 2. Monte Carlo 计祘机模擬(从分子出发)

为什么人文学看起來不像科学

In any scientific study, there are three research approaches/levels:

- Empirical
- Phenomenological
- Bottom-up

Humanities (since Plato) are mostly at the empirical and phenomenological levels, with some exceptions in last few decades.

 A book showing all three approaches in the study of a humanities subject:

Vienna portraiture from 1900 to present

Eric Kandel

Nobel Laureate Neurobiologist Columbia University

如何提升人文学研究水平

- 通过人文学学者与自然科学家的合作
- 更多的从下而上层次研究

<u>文理交融的书(人文学学者写的)</u>

1986

2003

历史研究的三个层次

	Physics (gas)	History	
Empirical level Collect data	\checkmark	\checkmark	
Summarize data	\checkmark	\checkmark	
ightarrow empirical laws	PV = kT	Dynasty lifetime, etc.	
Phenomenological level	Navier-Stokes equation	Active walk, etc.	
Bottom-up level	Molecular dynamics	Computer simulation	

Lessons from physics research

- You don't have to know things in detail.
- Simplify by keeping only the relevant factors.
- For a stochastic system (like history) one has to ask different questions (i.e., historians have been asking the wrong questions).

一条定量的历史定律

A quantitative law with prediction in Chinese history

A Quantitative Law: A Chinese dynasty can survive every 3.5 years if it lasts less than 57 years; beyond that, every 25.6 years (i.e., dynasty lifetime is discrete, or "quantized").

A quantitative prediction (assuming dynasties fall into the bilinear type):

Any dynasty after Qing, if exists, will either

- 1. last 290 years or less and fall on the two lines, or
- 2. end definitely and exactly in its year 329.

艺术研究的三个层次

In any scientific study, after

- observing and collecting data, and
- analyzing data

In arts, done mostly by artists, writers, musicians, movie directors and actors, ...

See, e.g., J. Lehrer, Proust was a Neuroscientist (2007)

there are three levels/approaches to go further:

Approach	Gas	Arts
Empirical	Gas law	Done by some artists, art critics and historians; Physics—fractals
Phenomenological	Navier-Stokes equation	Done by some historians/ philosophers; Evolutionary theory (Darwin)
Bottom → up	Molecular picture (called "microscopic" method in physics)	Biology—evolutionary theory (genes), cognitive science; Physics—statistical analysis,

John Barrow, The Artful Universe (1995); Physics World, "Physics Meets Art and Literature", Dec. 2002 (special issue).