Electrodynamics

Dr. Ray Kwok
sjsu

Static EMEldS (stationary charges, steady current)

$$
\left\{\begin{array}{l}
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}=\frac{\mathrm{Q}_{\mathrm{t}}}{\varepsilon_{\mathrm{o}}} \\
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=0 \\
\oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{da}=0 \\
\oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \vec{\ell}=\mu_{\mathrm{o}} \mathrm{I}_{\mathrm{t}}
\end{array}\right\} \quad \begin{aligned}
& \text { Gauss's Law } \\
& \text { Conservative } \\
& \text { No magnetic charge }
\end{aligned} \quad\left\{\begin{array}{l}
\nabla \cdot \overrightarrow{\mathrm{D}}=\rho_{\mathrm{f}} \\
\nabla \times \overrightarrow{\mathrm{E}}=0 \\
\nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}
\end{array}\right\}
$$

linear, homogeneous, isotropic

$$
\begin{aligned}
& \overrightarrow{\mathrm{D}}=\varepsilon \overrightarrow{\mathrm{E}}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \overrightarrow{\mathrm{E}}=\varepsilon_{0} \overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{P}} \\
& \overrightarrow{\mathrm{~B}}=\mu \overrightarrow{\mathrm{H}}=\mu_{0} \mu_{\mathrm{r}} \overrightarrow{\mathrm{H}}=\mu_{\mathrm{o}}(\overrightarrow{\mathrm{H}}+\overrightarrow{\mathrm{M}})
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \overrightarrow{\mathrm{E}}=\frac{\rho_{\mathrm{t}}}{\varepsilon_{\mathrm{o}}} \\
& \nabla \cdot \overrightarrow{\mathrm{P}}=-\rho_{\mathrm{b}} \\
& \rho_{\mathrm{t}}=\rho_{\mathrm{f}}+\rho_{\mathrm{b}}=\frac{\rho_{\mathrm{f}}}{\varepsilon_{\mathrm{r}}} \leq \rho_{\mathrm{f}}
\end{aligned}
$$

Orsted's Discovery

$$
\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \vec{\ell}=\mu_{0} \mathrm{I}_{\mathrm{t}}
$$

Hans Christian Ørsted (1777-1851) Danmark cgs unit for B

Ampere's Law, 9/18/1820, after he learned about Orsted's discovery on $9 / 11 / 1820$!!

André-Marie Ampère

(1775-1836) France
SI unit for current

Faraday's Experiment

With stationary magnet, no current induced (1831)

Michael Faraday (1791-1867) England SI unit for capacitance

Magnetic induction

(a) A stationary magnet does NOT induce a current in a coil.

All these actions DO induce a current in the coil. What do they have in common?*
(b) Moving the magnet
toward or away from the coil

(c) Moving a second, current-carrying
coil toward or away from the coil

*They cause the magnetic field through the coil to change.

Faraday's Law

$$
\mathrm{V}_{\mathrm{emf}} \equiv \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=-\frac{\mathrm{d} \Phi}{\mathrm{dt}}
$$

oppose the "change" of

$$
\Phi=\int \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}
$$

magnetic flux

Lenz's Law (1834)

"Back emf" to oppose the "change" of magnetic flux

Heinrich Friedrich Emil Lenz (1804-1865) Italy

Example - moving magnet

(a) Motion of magnet causes increasing downward flux

(b) Motion of magnet causes decreasing upward flux through

The induced magnetic field is upward to oppose the flux change. To produce this induced field, the induced current must be counterclockwise as seen from above the loop.
(c) Motion of magnet causes decreasing downward flux

(d) Motion of magnet causes increasing upward flux through

The induced magnetic field is downward to oppose the flux change. To produce this induced field, the induced current must be clockwise as seen from above the loop.

Example - jumping ring

e.g. magnet in a copper tube

Eddy current - disc brake

To reduce eddy current

transformer

Example - metal detector

(a)
(b)

Example - guitar pickup

Question

Find the direction of the current in the resistor R shown in Figure at each the following steps: (a) at the instant the switch is closed, (b) after the switch has been closed for several minutes, (c) when the variable resistance r increases, (d) when the circuit containing R moving to the right, away from the other circuit, and (e) at the instant the switch is opened.

Right, 0, Left, Left, Left

Moving Conductor

$\overrightarrow{\mathrm{F}}_{\mathrm{E}}+\overrightarrow{\mathrm{F}}_{\mathrm{B}}=0$ separate the charges
saturate when $\mathrm{q} \overrightarrow{\mathrm{E}}+\mathrm{q} \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}}=0 \quad$ induced E $\overrightarrow{\mathrm{E}}=-\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}}$
induced $\frac{V}{\ell}=-u B$
emf $\mathrm{V}=-\mathrm{uB} \ell$ similar to Hall Effect

$$
\begin{aligned}
& \text { emf is " }+ \text { " u } \times \mathbf{B} \\
& \text { induced curren } \neq t \\
& I=|V / R|=B \quad u / R
\end{aligned}
$$

direction agrees w/ Lenz's Law

Generalized Faraday's Law

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{emf}} \equiv \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=-\frac{\mathrm{d} \Phi}{\mathrm{dt}}=-\int \frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}} \quad \text { changing } \mathrm{B}(\mathrm{t}) \text {, stationary loop } \\
& \mathrm{V}_{\mathrm{emf}} \equiv \oint \frac{\overrightarrow{\mathrm{~F}}_{\mathrm{B}}}{\mathrm{q}} \cdot \mathrm{~d} \vec{\ell}=\oint \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \vec{\ell} \quad \quad \text { fixed } \mathrm{B} \text {, moving loop } \\
& \frac{\mathrm{d}}{\mathrm{dt}} \int \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}=\int\left(\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}-\nabla \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}})\right) \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=\int \frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}-\oint \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \vec{\ell} \\
& \mathrm{~V}_{\mathrm{emf}}=-\frac{\mathrm{d} \Phi}{\mathrm{dt}}=\oint \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \vec{\ell}-\int \frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \cdot \mathrm{da}
\end{aligned}
$$

induced emf in a moving loop w.r.t. "stationary" $B(t)$
Einstein's Relativity:
move the loop, Lorentz force (magnetic) [motional emf] move the magnet, induced emf - electric [transformer emf]

Example - rotating loop

Direction of current (at this instance)??

Group Exercise

Find the induced emf in a rectangular loop rotating at an angular velocity ω in a magnetic field $\mathrm{B}_{\mathrm{o}} \sin \omega \mathrm{t}$.
\& the direction of induced current?
(Can you do this problem in 2 ways?)

AC generator

$$
\begin{aligned}
& V_{e m f}=-\mathrm{N} \frac{\mathrm{~d} \Phi}{\mathrm{dt}} \\
& =\mathrm{N} \omega \mathrm{BA} \sin \omega \mathrm{t}
\end{aligned}
$$

DC generator

Electromotor

To turn faster, should we

1. use thicker wire?
2. use more turns?
3. make bigger loop?
4. use stronger magnet

Answer... (not counting friction)

$\mathrm{V}_{\mathrm{emf}}=-\mathrm{N} \frac{\mathrm{d} \Phi}{\mathrm{dt}}=\mathrm{N} \omega \mathrm{BA} \sin \omega \mathrm{t}$
$|\mathrm{I}|=\frac{\mathrm{N} \omega \mathrm{BA}}{\mathrm{R}}$
$\overrightarrow{\mathrm{F}}_{\mathrm{B}}=\overrightarrow{\mathrm{I} \ell} \times \overrightarrow{\mathrm{B}}$
$\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}_{\mathrm{B}}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{B}} \quad$ torque
$\overrightarrow{\mathrm{m}}=$ NIA $\hat{\mathrm{n}} \quad$ magnetic moment
$\vec{\tau}=\mathrm{I} \vec{\alpha} \quad \mathrm{I}=$ moment of inertia
$\mathrm{R}=\rho \frac{\ell}{\mathrm{A}^{\prime}} \quad$ resistivity
$\mathrm{m}=\rho \mathrm{V}=\rho \mathrm{A}^{\prime} \ell$ mass density

1. use thicker wire?
same.
e.g. half R , double mass, same α
2. use more turns?
same.
double N, double R, same I,
double mm , but double inertia, same α.
3. use bigger loop? (same N)
same.
bigger A, more Φ
somewhat higher R, but still more $I \sim A / R \sim r$ $m m \sim A^{2} / R \sim r^{3}$, inertia $\sim r^{3}$, same α
4. use stronger magnet?

YES
more I, m, τ, α
e.g. flash lights

Another important application - telephony / loudspeaker

(practical improvement)
Thomas Alva Edison
(1847-1931) USA

Ideal Transformer (AC)

Φ is confined in the core $(\mu=\infty) \quad V_{1}=-N_{1} \frac{d \Phi}{d t}$

Self-Inductance

Self-inductance: If the current i in the coil is changing, the changing flux through the coil
 induces an emf
in the coil.

back emf causes I lags V $V=I Z=I(R+j \omega L)=I|Z| e^{j \theta}$

$$
\begin{aligned}
& L \equiv \frac{N \Phi}{I} \\
& V=-N \frac{d \Phi}{d t}=-L \frac{d I}{d t}
\end{aligned}
$$

Ideal Solenoid

ideal:

- large N tightly wound
- no end effect
- uniform internal B
- zero external B in the vicinity

Ampere's Law:

$$
\mathrm{B}=\frac{\mu_{\mathrm{o}} \mathrm{NI}}{\ell}=\mu_{\mathrm{o}} \mathrm{nI}
$$

$$
\Phi=\int \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}=\mu_{\mathrm{o}} \mathrm{nIA}
$$

$$
\mathrm{L}=\frac{\mathrm{N} \Phi}{\mathrm{I}}=\frac{\mathrm{N} \mu_{\mathrm{o}} \mathrm{nIA}}{\mathrm{I}}=\mu_{\mathrm{o}} \mathrm{n}^{2} \ell \mathrm{~A}
$$

Coaxial Cable

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \boldsymbol{\ell}=\mu_{\mathrm{o}} \mathrm{I} \\
& \overrightarrow{\mathrm{~B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}} \hat{\phi}
\end{aligned}
$$

$\Phi=\int \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{\mu_{\mathrm{o}} \mathrm{I}}{2 \pi \mathrm{r}} \hat{\phi} \cdot \hat{\phi} h d \mathrm{r}=\frac{\mu_{\mathrm{o}} \mathrm{Ih}}{2 \pi} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$
$\mathrm{L}=\frac{\Phi}{\mathrm{I}}=\frac{\mu_{\mathrm{o}} \mathrm{h}}{2 \pi} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$

LC Resonator (Lenz's Law, later resonator...)

Mutual-Inductance

$$
\mathrm{M}_{12} \equiv \frac{\Phi_{12}}{\mathrm{I}_{1}}
$$

Φ_{12} is the flux through loop 2 due to the B generated by loop 1
more than 1 turn?
$\mathrm{M}_{12}=\frac{\mathrm{N}_{2} \Phi_{12}}{\mathrm{I}_{1}}$

$$
\begin{aligned}
& \Phi_{12}=\int \overrightarrow{\mathrm{B}}_{1} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}_{2}=\int \nabla \times \overrightarrow{\mathrm{A}}_{1} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}_{2}=\oint \overrightarrow{\mathrm{A}}_{1} \cdot \mathrm{~d} \vec{\ell}_{2} \\
& \overrightarrow{\mathrm{~A}}(\overrightarrow{\mathrm{r}})=\frac{\mu_{\mathrm{o}}}{4 \pi} \int \frac{\overrightarrow{\mathrm{~J}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right)}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right|} \mathrm{dV} V^{\prime}=\frac{\mu_{\mathrm{o}}}{4 \pi} \oint \frac{\mathrm{I}\left(\mathrm{r}^{\prime}\right)}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right|} \mathrm{d} \vec{\ell}^{\prime}
\end{aligned}
$$

$$
\Phi_{12}=\frac{\mu_{\mathrm{o}}}{4 \pi} \oiint \frac{\mathrm{I}_{1}}{\mathrm{r}_{12}} \mathrm{~d} \vec{\ell}_{1} \cdot \mathrm{~d} \vec{\ell}_{2}
$$

$$
\mathrm{M}_{12}=\frac{\Phi_{12}}{\mathrm{I}_{1}}=\frac{\mu_{\mathrm{o}}}{4 \pi} \oiint \frac{\mathrm{~d} \vec{\ell}_{1} \cdot \mathrm{~d} \vec{\ell}_{2}}{\mathrm{r}_{12}}=\mathrm{M}_{21}
$$

Transformer - Primary / Secondary coils

Cross-sectional area A
same cross-section?

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{~N}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~N}_{2}}=-\frac{\partial \Phi}{\partial \mathrm{t}} \\
& \frac{\mathrm{~N}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{N}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{M}_{12}}{\Phi_{12}}
\end{aligned}
$$

same equations
different cross-section? h.w.

Magnetic Energy

For an inductor ...

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\frac{1}{2} \int \frac{\mathrm{~B}^{2}}{\mu_{\mathrm{o}}} \mathrm{dV} \\
& \mathrm{~W}_{\mathrm{m}}=\frac{1}{2} \mathrm{LI}^{2} \\
& \mathrm{~W}_{\mathrm{m}}=\frac{1}{2} \mathrm{I} \Phi
\end{aligned}
$$

For coupling circuits $1 \& 2$...

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\frac{1}{2} \mathrm{I}_{1} \Phi_{1}+\frac{1}{2} \mathrm{I}_{2} \Phi_{2} \\
& \Phi_{1}=\Phi_{11}+\Phi_{21} \\
& \Phi_{2}=\Phi_{22}+\Phi_{12} \\
& \mathrm{~W}_{\mathrm{m}}=\frac{1}{2} \mathrm{I}_{1} \Phi_{11}+\frac{1}{2} \mathrm{I}_{1} \Phi_{21}+\frac{1}{2} \mathrm{I}_{2} \Phi_{22}+\frac{1}{2} \mathrm{I}_{2} \Phi_{12} \\
& \Phi_{11}=\mathrm{L}_{1} \mathrm{I}_{1} \\
& \Phi_{22}=\mathrm{L}_{2} \mathrm{I}_{2} \\
& \Phi_{12}=\mathrm{M}_{12} \mathrm{I}_{1}=\mathrm{MI}_{1} \\
& \Phi_{21}=\mathrm{M}_{21} \mathrm{I}_{2}=\mathrm{MI}_{2} \\
& \mathrm{~W}_{\mathrm{m}}=\frac{1}{2} \mathrm{~L}_{1} \mathrm{I}_{1}^{2}+\frac{1}{2} \mathrm{~L}_{2} \mathrm{I}_{2}^{2}+\mathrm{MI}_{1} \mathrm{I}_{2}
\end{aligned}
$$

Faraday's Law - differential

$$
\left.\begin{array}{l}
\mathrm{V}_{\mathrm{emf}} \equiv \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=-\frac{\mathrm{d}}{\mathrm{dt}} \int \overrightarrow{\mathrm{~B}} \cdot \mathrm{da} \\
\int \nabla \times \overrightarrow{\mathrm{E}} \cdot \mathrm{da}=-\int\left(\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}-\nabla \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}})\right) \cdot \mathrm{da} \quad \text { Stokes' theorem }
\end{array}\right] \begin{aligned}
& \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}+\nabla \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}}) \quad \begin{array}{l}
\mathrm{E} \text { is induced in moving medium } \\
\mathrm{B} \text { is measured in stationary frame } \\
\text { curl operates in moving frame }
\end{array} \\
& \nabla \times \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right)=-\frac{\partial \overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{r}})}{\partial \mathrm{t}}+\nabla^{\prime} \times(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{r}})) \quad \text { relativity, low } \mathrm{f}
\end{aligned}
$$

Electrodynamics

\(\left\{\begin{array}{l}\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=\frac{\mathrm{Q}_{\mathrm{t}}}{\varepsilon_{\mathrm{o}}}

\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=-\frac{\mathrm{d} \Phi}{\mathrm{dt}}

\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=0

\oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \vec{\ell}=\mu_{\mathrm{o}} \mathrm{I}_{\mathrm{t}}\end{array}\right\} \quad\)| Gauss's Law |
| :--- |
| Faraday's Law |
| No magnetic charge |
| Ampere's Law |

$$
\left\{\begin{array}{c}
\nabla \cdot \overrightarrow{\mathrm{D}}=\rho_{\mathrm{f}} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \\
\nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}
\end{array}\right\}
$$

Electric Potential

static	$\nabla \times \overrightarrow{\mathrm{E}}=0$
define	$\overrightarrow{\mathrm{E}} \equiv-\nabla \mathrm{V}$
such that	$\nabla \times \nabla \mathrm{V}=0$
	$\nabla \cdot \overrightarrow{\mathrm{~B}}=0$
define	$\overrightarrow{\mathrm{B}} \equiv \nabla \times \overrightarrow{\mathrm{A}}$
such that	$\nabla \cdot \nabla \times \overrightarrow{\mathrm{A}}=0$

dynamic $\begin{gathered}\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{t}} \nabla \times \overrightarrow{\mathrm{A}} \\ \nabla \times\left(\overrightarrow{\mathrm{E}}+\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}\right)=0 \\ \overrightarrow{\mathrm{E}}+\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}=-\nabla \mathrm{V} \\ \overrightarrow{\mathrm{E}}=-\nabla \mathrm{V}-\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}\end{gathered}$
Need both V and A to find E !!!!!

Group Exercise

Rectangular loop of 20 turns is placed at 1 m away from a long current-carrying wire as shown.
$\mathrm{I}_{1}(\mathrm{t})=2 \cos (60 \mathrm{t}) \quad(\mathrm{A})$
Resistivity of the wire in the loop is $4 \Omega / \mathrm{m}$.
Find I_{2}.

