Chapter 2

Vector Algebra

Review

Dr. Ray Kwok SJSU

Vector products

(scalar) (scalar) = scalar, (a)(b) = abe.g. 2(4 kg) = 8 kg

```
(scalar) (vector) = vector, k(\vec{A}) = k\vec{A}
e.g. 5(2\hat{x} + 4\hat{y}) = 10\hat{x} + 20\hat{y}
```

(vector) times (vector) = ? can be scalar (scalar product, or dot product) $\vec{A} \cdot \vec{B}$ or vector (vector product, or cross product) $\vec{A} \times \vec{B}$

Can you add a vector to a scalar?

The scalar product (dot product)

$$\vec{A} \cdot \vec{B} = AB\cos\theta$$
$$\hat{x} \cdot \hat{x} = 1 = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z}$$
$$\hat{x} \cdot \hat{y} = 0 = \hat{x} \cdot \hat{z} = \hat{y} \cdot \hat{z}$$

$$\vec{A} \cdot \vec{B} = (A_x \hat{x} + A_y \hat{y} + A_z \hat{z}) \cdot (B_x \hat{x} + B_y \hat{y} + B_z \hat{z})$$
$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

e.g.
$$\vec{A} = 2\hat{x} - 2\hat{y}$$

 $\vec{B} = 3\hat{x} + \hat{y}$
What is $\mathbf{A} \cdot \mathbf{B}$?

What's the angle between these 2 arrows?

So, is the uplifting force doing anything at all??

The vector product (cross product)

$$\begin{vmatrix} \vec{A} \times \vec{B} \end{vmatrix} = AB\sin\theta \\ \hat{x} \times \hat{x} = 0 = \hat{y} \times \hat{y} = \hat{z} \times \hat{z} \\ \hat{x} \times \hat{y} = \hat{z} \\ \hat{y} \times \hat{z} = \hat{x} \\ \hat{z} \times \hat{x} = \hat{y} \\ \hat{y} \times \hat{x} = -\hat{z} \\ \hat{z} \times \hat{y} = -\hat{x} \\ \hat{x} \times \hat{z} = -\hat{y} \end{vmatrix}$$

$$\vec{A} \times \vec{B} \equiv \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

e.g. $\vec{A} = 2\hat{x} - 2\hat{y}$ $\vec{B} = 3\hat{x} + \hat{y}$ What is **A** x **B** ?

What's the angle between these 2 arrows?

choose "+" = counter-clockwise

$$\Sigma \tau_{o} = (1.5)(4) \sin(40^{\circ})$$

= 3.86 N-m (counter-clockwise)

 $\Sigma \tau_{o} = (1.5)[4 sin(40^{o})]$ = 3.86 N-m (counter-clockwise)

Exercise - 1

$$\vec{A} = \hat{x} - 4\hat{z}$$
$$\vec{B} = 2\hat{x} + \hat{y} + \hat{z}$$

- (b) $\vec{B} 2\vec{A}$
- (c) $\vec{A} \cdot \vec{B}$
- (d) $\vec{A} \times \vec{B}$
- (e) $\vec{A} \times \vec{A}$
- (f) $\vec{B} \cdot \vec{B}$
- (g) Angle between A and B
- (h) Find a vector that is perpendicular to A and B?

Triple vector product

scalar
$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

vector $(\vec{A} \times \vec{B}) \times \vec{C} = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{B} \cdot \vec{C})\vec{A} \neq \vec{A} \times (\vec{B} \times \vec{C})$

(homework)

OCC Orthogonal Curvilinear Coordinates

 $\mbox{Orthogonal} \qquad \hat{\boldsymbol{e}}_{i} \cdot \hat{\boldsymbol{e}}_{j} = \boldsymbol{\delta}_{ij}$

Curvilinear – coordinate surfaces can be curved

Cartesian, Cylindrical & Spherical coordinates

Transformation between coordinatesLine, Area & Volume integral in each coordinate

Rectangular \Leftrightarrow Polar (2D)

- Polar to rectangular
 - $\mathbf{x} = \mathbf{r} \cos \theta$
 - $y = r \sin \theta$
- Rectangular to polar
 - $r^2 = x^2 + y^2$ (Pythagorean theorem)
 - $\tan \theta = y/x$ (be certain which angle is θ)

Transformation

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{vmatrix} r = \sqrt[4]{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{vmatrix}$	$\hat{\mathbf{r}} = \hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi$ $\hat{\boldsymbol{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$\begin{vmatrix} A_r = A_x \cos \phi + A_y \sin \phi \\ A_\phi = -A_x \sin \phi + A_y \cos \phi \\ A_z = A_z \end{vmatrix}$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ z = z	$\hat{\mathbf{x}} = \hat{\mathbf{r}} \cos \phi - \hat{\boldsymbol{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}} \sin \phi + \hat{\boldsymbol{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}[\sqrt[+]{x^2 + y^2}/z]$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi + \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta \hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ + $A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$
for an an an the second se Second second s	$\phi = \tan^{-1}(y/x)$	$+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\boldsymbol{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$	$+ A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
Spherical to Cartesian	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ + $\hat{\boldsymbol{\theta}} \cos \theta \cos \phi - \hat{\boldsymbol{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ + $\hat{\boldsymbol{\theta}} \cos \theta \sin \phi + \hat{\boldsymbol{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\boldsymbol{\theta}} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ + $A_\theta \cos \theta \cos \phi - A_\phi \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ + $A_\theta \cos \theta \sin \phi + A_\phi \cos \phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\boldsymbol{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}}$	$A_{R} = A_{r} \sin \theta + A_{z} \cos \theta$ $A_{\theta} = A_{r} \cos \theta - A_{z} \sin \theta$ $A_{\phi} = A_{\phi}$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\boldsymbol{\theta}} \cos \theta$ $\hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\boldsymbol{\theta}} \sin \theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

Vector operations

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	<i>x</i> , <i>y</i> , <i>z</i>	r, ϕ, z	$R, heta, \phi$
Vector representation, A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\boldsymbol{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\boldsymbol{ heta}}A_{ heta} + \hat{\boldsymbol{\phi}}A_{\phi}$
Magnitude of A, $ A =$	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$ for $P(r_1, \phi_1, z_1)$	$\hat{\mathbf{R}}R_1,$ for $P(R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1$ $\hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}} = 0$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\mathbf{r}} imes \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\phi}} imes \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\mathbf{R}} imes \hat{oldsymbol{ heta}} = \hat{oldsymbol{\phi}} \ \hat{oldsymbol{ heta}} imes \hat{oldsymbol{ heta}} = \hat{\mathbf{R}}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\hat{\mathbf{z}}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}}$	$\hat{oldsymbol{\phi}} imes \hat{f R} = \hat{ heta}$
Dot product, $\mathbf{A} \cdot \mathbf{B} =$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, A × B =	$ \begin{array}{c ccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{array} $		$ \begin{array}{cccc} \hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{array} $
Differential length, $dl =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\boldsymbol{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\boldsymbol{\theta}} R d\theta + \hat{\boldsymbol{\phi}} R \sin \theta d\phi$
Differential surface areas	$d\mathbf{s}_{x} = \hat{\mathbf{x}} dy dz$ $d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_{r} = \hat{\mathbf{r}}r \ d\phi \ dz$ $d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}} \ dr \ dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}}r \ dr \ d\phi$	$d\mathbf{s}_{R} = \hat{\mathbf{R}}R^{2}\sin\theta \ d\theta \ d\phi$ $d\mathbf{s}_{\theta} = \hat{\boldsymbol{\theta}}R\sin\theta \ dR \ d\phi$ $d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}}R \ dR \ d\theta$
Differential volume, $dv =$	dx dy dz	r dr dφ dz	$\cdot R^2 \sin \theta \ dR \ d\theta \ d\phi$

Homework

Ch.2 - 3, 5, 10, 12, 13, 15, 20, 23, 26, 30, and prove eqn-2.33 $(\vec{A} \times \vec{B}) \times \vec{C} = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{B} \cdot \vec{C})\vec{A}$

Also prove that $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$