Chapter 2

Vector Algebra Review

Dr. Ray Kwok SJSU

Vector products

(scalar) (scalar) = scalar, $\quad(a)(b)=a b$
e.g. $2(4 \mathrm{~kg})=8 \mathrm{~kg}$
(scalar) $($ vector $)=$ vector, $\quad k(\vec{A})=k \vec{A}$
e.g. $5(2 \hat{x}+4 \hat{y})=10 \hat{x}+20 \hat{y}$
(vector) times (vector) $=$?
can be scalar (scalar product, or dot product) $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}$
or
vector (vector product, or cross product) $\vec{A} \times \vec{B}$
Can you add a vector to a scalar?

The scalar product (dot product)

$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta$
$\hat{x} \cdot \hat{x}=1=\hat{y} \cdot \hat{y}=\hat{z} \cdot \hat{z}$
$\hat{x} \cdot \hat{y}=0=\hat{x} \cdot \hat{z}=\hat{y} \cdot \hat{z}$
$\vec{A} \cdot \vec{B}=\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right) \cdot\left(B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right)$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{B}_{\mathrm{z}}$
e.g. $\quad \vec{A}=2 \hat{x}-2 \hat{y}$
$\vec{B}=3 \hat{x}+\hat{y}$
What is $\mathbf{A} \cdot \mathbf{B}$?
e.g.

What's the angle between these 2 arrows?

Interpretation - projection

(a)
(a)

(b) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$ equals $A(B \cos \phi)$.
(Magnitude of $\overrightarrow{\boldsymbol{A}}$) times (Component of $\overrightarrow{\boldsymbol{B}}$

(b)

(c)

Example - Work

$$
\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \Delta \overrightarrow{\mathrm{x}}
$$

(Projection)

So, is the uplifting force doing anything at all??

The vector product (cross product)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta \\
& \hat{\mathrm{x}} \times \hat{\mathrm{x}}=0=\hat{\mathrm{y}} \times \hat{\mathrm{y}}=\hat{\mathrm{z}} \times \hat{\mathrm{z}} \\
& \hat{\mathrm{x}} \times \hat{\mathrm{y}}=\hat{\mathrm{z}} \\
& \hat{\mathrm{y}} \times \hat{\mathrm{z}}=\hat{\mathrm{x}} \quad \text { right-hand coordinate } \\
& \hat{\mathrm{z}} \times \hat{\mathrm{x}}=\hat{\mathrm{y}} \\
& \hat{\mathrm{y}} \times \hat{\mathrm{x}}=-\hat{\mathrm{z}} \\
& \hat{z} \times \hat{\mathrm{y}}=-\hat{\mathrm{x}} \\
& \hat{\mathrm{x}} \times \hat{\mathrm{z}}=-\hat{\mathrm{y}}
\end{aligned}
$$

e.g. $\quad \vec{A}=2 \hat{x}-2 \hat{y}$

$$
\overrightarrow{\mathrm{B}}=3 \hat{\mathrm{x}}+\hat{\mathrm{y}}
$$

What is $\mathbf{A} \times \mathbf{B}$?

What's the angle between these 2 arrows?

Example - calculate torque

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

choose " + " = counter-clockwise

$$
\begin{aligned}
\Sigma \tau_{0} & =(1.5)(4) \sin \left(40^{\circ}\right) \\
& =3.86 \mathrm{~N}-\mathrm{m} \text { (counter-clockwise) }
\end{aligned}
$$

Example - perpendicular F

$$
\begin{aligned}
\Sigma \tau_{o} & =(1.5)\left[4 \sin \left(40^{\circ}\right)\right] \\
& =3.86 \mathrm{~N}-\mathrm{m} \text { (counter-clockwise) }
\end{aligned}
$$

Example - moment arm

Exercise-1

Find:

$$
\begin{aligned}
& \vec{A}=\hat{x}-4 \hat{z} \\
& \vec{B}=2 \hat{x}+\hat{y}+\hat{z}
\end{aligned}
$$

(a) $\vec{A}+\vec{B}$
(b) $\vec{B}-2 \vec{A}$
(c) $\vec{A} \cdot \vec{B}$
(d) $\vec{A} \times \vec{B}$
(e) $\vec{A} \times \vec{A}$
(f) $\vec{B} \cdot \vec{B}$
(g) Angle between A and B
(h) Find a vector that is perpendicular to A and B ?

Triple vector product

scalar $\quad \vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|$
vector $\quad(\vec{A} \times \vec{B}) \times \vec{C}=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{B} \cdot \vec{C}) \vec{A} \neq \vec{A} \times(\vec{B} \times \vec{C})$

OCC Orthogonal Curvilinear Coordinates

Orthogonal $\quad \hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j}$
Curvilinear - coordinate surfaces can be curved
Cartesian, Cylindrical \& Spherical coordinates
-Transformation between coordinates
-Line, Area \& Volume integral in each coordinate

Rectangular \Leftrightarrow Polar (2D)

- Polar to rectangular
- $x=r \cos \theta$
- $y=r \sin \theta$
- Rectangular to polar
- $r^{2}=x^{2}+y^{2}$
(Pythagorean theorem)
- $\tan \theta=y / x$
(be certain which angle is θ)

Transformation

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cylindrical to Cartesian	$\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cartesian to spherical	$\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{x}} \sin \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{x}} \cos \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$	$\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & +A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$
Spherical to Cartesian	$\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & \quad+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ \quad & \quad+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$
Cylindrical to spherical	$\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$
Spherical to cylindrical	$\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$

Vector operations

-	$\begin{aligned} & \text { Cartesian } \\ & \text { Coordinates } \end{aligned}$	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z,	R, θ, ϕ
Vector representation, $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\boldsymbol{\phi}} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} \dot{A}_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of $\mathbf{A},\|A\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\cdots \sqrt{A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O \longrightarrow}=$	$\hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}$, for $P\left(x_{1}, y_{1}, z_{1}\right)$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1} \\ \text { for } P\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} R_{1}, \\ \text { for } P\left(R_{1}, \theta_{1}, \phi_{1}\right) \end{gathered}$
Base vectors properties	$\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}=1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \end{gathered}$
Dot product, $\mathbf{A} \cdot \mathbf{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} \dot{B}_{\theta}+A_{\phi} B_{\phi}$
Cross product, $\mathbf{A} \times \mathbf{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{z} \\ B_{r} & B_{\phi} & B_{z}\end{array}\right\|$	$\hat{\mathbf{R}}$ $\hat{\boldsymbol{\theta}}$ $\hat{\boldsymbol{\phi}}$ A_{R} A_{θ} A_{ϕ} B_{R} B_{θ} B_{ϕ}
Differential length, $d l=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \boldsymbol{\phi}+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\boldsymbol{\theta}} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \boldsymbol{\phi}$
Differential surface areas	$\begin{aligned} d \mathbf{s}_{x} & =\hat{\mathbf{x}} d y d z \\ d \mathbf{s}_{y} & =\hat{\mathbf{y}} d x d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume, $d \mathcal{V}=$	$d x d y d z$	$r d r d \phi d z$	- $R^{2} \sin \theta d R d \theta d \phi$

Homework

Ch. $2-3,5,10,12,13,15,20,23,26,30$,
and prove eqn-2.33 $(\vec{A} \times \vec{B}) \times \vec{C}=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{B} \cdot \vec{C}) \vec{A}$

Also prove that $\quad(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$

