

RF Communication System

EE 172 Systems Group Presentation

RF System Outline

Transmitter Components Receiver Components □ Noise Figure Link Budget Test Equipment □ System Success Design Remedy

Transmitter Components

Audio Transducer □ Oscillator □ Modulator □ Band Pass Filter □ Power Amplifier □ Low Pass Filter □ Antenna

Receiver Components

□ Antenna □ Evanescent Mode Filter □ Low Noise Amplifier □ Oscillator □ Demodulator □ Band Pass Filter □ Speaker

Noise Figure

The Noise Figure (NF) is the increase of noise power from the input to the output of a network

White noise", or noise power, is constant in RF and microwave frequencies

Noise is mainly important on the receiver end due to the low signal strength

Noise Figure (LNA example)

 Noise Figure is the ratio of the signal to noise power going into a device compared to the signal to noise ratio coming out

Noise Figure of a passive device, such as a filter, is equal to its attenuation

Link Budget - Expected

 $P_T = Transmitter power (dBm)$ 30 dBm $G_T = Transmitter antenna gain (dB)$ 3 dB $G_R = Receiver antenna gain (dB)$ 10 dB $P_L = Path Loss (dB)$ -154 dB $T_P = P_T + G_T + G_R + P_L$ -111 dBm

*Path loss is an estimated value. Propagation engineers would be responsible for this value.

Link Budget - Calculations

	Transmitter					
Parameters & Calculations	Modulator (oscillator terminated)	Modulator (audio terminated)	Band Pass Filter	Amplifier (Systems)	Low Pass Filter	
S11 (dB)	-6.01	-4.76	-5.50	-7.40	-5.08	
S12 (dB)	-39.50	-17.24	-60.00	-20.20	-7.06	
S21 (dB)	-40.30	-17.22	-60.00	-20.20	-7.06	
S22 (dB)	-2.48	-3.93	-4.30	-5.50	-6.65	
ρ	0.50	0.58	0.53	0.43	0.56	
Return Loss (dB)	-6.01	-4.76	-5.50	-7.40	-5.08	
Insertion Loss (dB)	-39.50	-17.24	-60.00	-20.20	-7.06	
SWR	3.00	3.74	3.26	2.49	3.52	
P reflected	25%	33%	28%	18%	31%	
P transmitted	75%	67%	72%	82%	69%	

Poromotoro 8	Receiver					
Calculations	Amplifier	Evanescent Mode Filter	Demodulator	Band Pass Filter		
S11 (dB)	-11.10	-4.70	-7.00	-15.00		
S12 (dB)	-47.00	-27.00	-23.50	-11.60		
S21 (dB)	-47.00	-27.00	-23.50	-11.60		
S22 (dB)	-4.70	-3.80	-5.70	-8.80		
ρ	0.28	0.58	0.45	0.18		
Return Loss (dB)	-11.10	-4.70	-7.00	-15.00		
Insertion Loss (dB)	-47.00	-27.00	-23.50	-11.60		
SWR	1.77	3.79	2.61	1.43		
P reflected	8%	34%	20%	3%		
P transmitted	92%	66%	80%	97%		

Link Budget - Actual

Transmitter power: 16 dBm Transmitter antenna gain: $6 \, dB$ Free space path loss: -71 dB Obstacle loss: -20 dB -20 dB Multipath loss: 10 dB Receiver antenna gain: -79 dB Received carrier power: Thermal noise in 1 MHz -15 dB 30 kHz bandwidth correction Receiver noise figure: -6 dB -123 dB Noise floor:

Carrier to noise ratio:

-114 dBm 32 dB

Test Equipment

Network Analyzer to retrieve S-parameters for reflection calculations Spectrum Analyzer to determine gain, bandwidth, and frequency measurements from components Power Supply

power up subsystems as needed

System Success

- □ The RF Communications System did... not work ☺
- Major factors for measuring our success includes:
 - power loss across all subsystems
 - gain was nominal versus loss
 - missing components vital for success
 - test yields were astray from specs

System Success

- Overall subsystems are lossy as opposed to ideal conditions
- Amplifier gain was 6 dB versus 15 dB as specs had stated and were missing 2 out of 3 of them.
- The Low Pass Filter had a tested cutoff frequency of 850 MHz versus 940 MHz as specs had stated.
- Demodulator tests showed that the carrier frequency was not removed.
- Systems attempted some remedial tactics.

Design Remedy

New amplifier was designed that yielded better gain. (with help of Elena from Oscillator group)

Attempted to design a new low pass filter to remedy cutoff frequency

Furthermore, the systems group recommends that all the subsystems be matched for the least reflections and loss.

Systems Analysis Team

Sahel Jalal
Rizwan Khalid
Kartik Patel
Gurvinder Dilawari
Ankush Mohan

Questions and Answers...

Center Frequency: 915 MHz

Insertion Loss: 10 dB

Actual Measurements

Center Frequency: 1.2 GHz

Insertion Loss: 46 dB @ 915 MHz

Bandwidth: 915 MHz +/- 15%

Bandwidth: 200 Mhz

Actual Measurements

Frequency: 915 MHz

Gain: 15 dB

Gain: 6 dB

Saturation: 28 V

Saturation: 22 V

Cutoff Frequency: 940 MHz

Actual Measurements

Cutoff Frequency: 850 MHz

Insertion Loss: 10 dB

Insertion Loss: 4.7 dB

Gain: 3 dBFrequency Range: 910 MHz to 920 MHzActual MeasurementsGain: 6 dBFrequency Range: 910 MHz to 920 MHz

Gain: 10 dBFrequency Range: 910 MHz to 920 MHzActual MeasurementsGain: 9-12 dBFrequency Range: 910 MHz to 920 MHz

Center Frequency: 915 MHz

Insertion Loss: 10 dB

Actual Measurements

Center Frequency: 915 MHz

Insertion Loss: 14 dB

Bandwidth: 140 MHz

Bandwidth: 140 MHz

Gain: 15 dB Frequency: 915 MHz

Actual Measurements

Missing originally, systems designed

Gain: 20 dB

Frequency: 915 MHz

Conversion Loss: 10 dB Spurious: None Bandwidth: 915 MHz +/-15%

Actual Measurements

Conversion Loss: 8.1 dB Bandwidth: 873 MHz to 960 MHz Spurious: None