Principles of X-ray Crystallography

Advisor: Raymond Kwok, Ph.D.

Coadvisor: Sotoudeh Hamedi-Hagh, Ph.D.

Committee Member: Masoud Mostafavi, Ph.D.

Supervisor: Tri Caohuu, Ph.D.

Luke Snow
58 Mount Hermon Rd
Scotts Valley, CA 95066
(831) 440-9170

LukeSnow@Gmail.com

Abstract

- The goal of this paper is to verify the principles of crystallography at radiofrequencies, and then use the principles to design an antenna.

Outline

- Motivation and Introduction
- Verify Principles
- Bragg's Law
- Scherrer Law
- Experimental Verification
- Switched beam design
- Conclusion and Further Work

The Classic Experimental Setup

Some Typical Data...

Some Typical Data...

Principles of X-ray Diffraction

- Bragg's Law
- The Scherrer Equation
- The Reciprocal Lattice
- The Ewald Sphere
- The Scattering Factor

Motivation and Methodology

- To apply the concepts verified to design an antenna.
- To verify the concepts, the flow chart at right was used.

Motivation and Methodology

- The concepts verified were employed to design an antenna, shown in the flow chart.

Background

- X-ray Crystallography is a well established field.
- Born with the Discovery of Bragg's Law, in 1912.
- Basic principles are used to determine crystal structure, size, and defects.

Photonic Crystals

- Pioneered by E. Yablonovitch in 1987.
- Most applications employ the band stop and band pass properties of photonic crystals
- Beam focusing antenna substrate
- Tunable 4-port switch
- Band pass or band block filters

Antenna

- The design can be thought of as an antenna array.
- The design presented, and the analysis behind it, appear to be unique.

Direction of Main Lobe

- The direction of the main lobe of the antenna is determined by Bragg's Law:
$\lambda=2 \mathrm{~d} \sin \theta$

Sample Level View

Bragg's Law Verified Experimental Setup

Top View

Skewed View

Results

34 Degree Incidence

45 Degree Incidence

Summary - Peak Locations

Predicted	Observed	
θ	$(\phi-90) / 2$	Δ
22	22	0.00%
24	24.25	0.40%
26	25.75	0.40%
28	27.75	0.30%
30	30	0.00%
32	32.25	0.30%
34	34.5	0.60%
36	37.25	1.50%
38	39	1.20%
40	41	1.20%
42	44.25	2.60%
44	44.5	0.60%
45	46	1.10%
46	46.75	0.80%
	Avg:	0.80%
	$R S D$	0.87

Beam Width

- The beam width (FWHM) is given by the Scherrer Law:
$B(2 \theta)=K \lambda /(N a \cos \theta)$
- K-shape factor
- N - size of the crystal in unit cells
- a - unit cell length for a square crystal
- λ-Wavelength
- θ - Bragg angle

Verification

- The Scherrer law is verified in two ways - By varying N , holding all other quantities constant. Expect a $1 / \mathrm{N}$ dependence, and values of K on the order of unity.
- Vary θ and a together; Use Bragg's Law to substitute for a in the Scherrer equation: $\mathrm{B}(2 \theta)=2 \mathrm{~K} \tan \theta / \mathrm{N}$

Results

K = 1.02 Gave Best Fit

Results

K = 0.90 Gave Best Fit

Experimental

- An antenna was constructed to verify Bragg's law.
- The antenna consisted of a waveguide, horn, and a parallel plate/crystal section.
- The antenna was designed to operate in the 6 GHz region.

Experimental

- Data was taken in a Compact Antenna Test Range (CATR).
- A VNA with $0-40 \mathrm{GHz}$ capability was used to take data.
- A WR137 waveguide to coax adapter was used for the detector.
- Two WR137 waveguides were used for a reference.
- Far Field for this design was 12 ft .
- Data was taken at approximately 14 ft , for an angular resolution of 0.5 deg .

Waveguide section

Parameter	Value
OD	$1.5^{\prime \prime} \times 1.0^{\prime \prime}$
ID	$1.25^{\prime \prime} \times 0.75^{\prime \prime}$
$\mathrm{f}_{\mathrm{c} 10}$	4.72 GHz
$\mathrm{f}_{\mathrm{c} 11}$	9.17 GHz
Length	$12^{\prime \prime}$

Horn Section

Parallel Plate Section

d	$1^{\prime \prime}$
$\mathrm{f}_{\mathrm{c} 00}$	0 GHz
$\mathrm{f}_{\mathrm{c} 10}$	6 GHz

Crystal Section

Post	$1 / 8^{\prime \prime}$
Diam	
θ	30°
λ	$2^{\prime \prime}$

Results

- Return Loss was better than -20 dB at 5.9 GHz , and was about -10 dB at 6.223 GHz
- 5.9 GHz corresponds to a wavelength of 2 in , but the best performance was obtained at 6.223 GHz , with a gain over WR137 of 8dB

Results

HFSS Data, 6GHz

The best radiation pattern obtained

30 degree incidence

A polar plot

Results

Best Performance

Conclusions and Observations

- Design could be improved with:
- Better grounding
- Higher quality plane wave.
- Larger diameter posts
- Longer interaction length

Switched Beam Antenna

- Each Crystal has an associated "reciprocal space" - a lattice of points related to those of the direct space crystal.
- The units of this space are inverse length.
- For a direct space rectangular lattice of dimensions a and b, the reciprocal lattice is of rectangular, of length $1 / \mathrm{a}, 1 / \mathrm{b}$.
- The "Ewald Circle" may be drawn in reciprocal space to describe an X-ray diffraction experiment, the circle having radius $1 / \lambda$
- When the circle intersects two or more reciprocal lattice points, one or more reflections are created.

For the given diagram, there are two 45 degree reflections. If $\mathrm{a}=\mathrm{b}$ $=0.5$ in, then $\lambda=$ 0.707 in

The reciprocal lattice has been altered by doubling the length of the basis vector in the vertical direction, corresponding to halving the directspace lattice basis vector

The two models

The two radiation patterns

Conclusion

- Various concepts of crystallography have been verified.
- Fruitful parallels between X-ray diffraction and photonic crystals exist, with potential to illuminate ideas in both fields.
- More work to be done before the design is admitted to practical application.
- Additional Measurements with the improved model
- Switched beam measurement

Pattern after Improvement

References

- D. Pozar, Microwave engineering, Hoboken NJ: Wiley, 2005, pp. 105,113.
- C.A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, Wiley-Interscience, 2005, pp. 740,742,756.
- B. Warren, X-ray diffraction, Reading Mass.: Addison-Wesley Pub. Co., 1969, pp. 18,31,251-254.
- M. Woolfson, in An introduction to X-ray crystallography, 2nd ed., Cambridge: Cambridge Univ. Press, 1997, p. 108.
- Data Taken in Upper Division Physics Lab, University of California, Santa Cruz, 2001
- W. L. Bragg, "The diffraction of short electromagnetic waves by a crystal," in Proceedings of the Cambridge Philosophical Society, vol. 17, pp. 43-57, 1913.
- A. L. Patterson, "The Scherrer formula for X-ray particle size determination," Physical Review, vol. 56, no. 10, pp. 978-982, 1939.
- P. Scherrer, "Göttinger Nachrichten," Math. Phys, vol. 98, 1918.
- F. Molinet, "Geomatrical Theory of Diffraction(GTD) Part I: Foundation of the theory," IEEE, vol. 29, no. 4, pp. 6-17, Aug. 1987.
- F. Molinet, "Geometrical Theory of Diffraction(GTD) Part II: Extensions and future trends of the theory," IEEE, vol. 29, no. 5, pp. 5-16, Oct. 1987.
- J. B. KELLER, "Geometrical Theory of Diffraction," Journal of the Optical Society of America, vol. 52, no. 2, pp. 116-130, Feb. 1962. See figs. 18-20
- S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, no. 23, pp. 24862489, 1987.
- E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 1987.
- J.M. J. Danglot, O. Vanbesien, D. Lippens, et al, "Toward Controllable Photonic Crystals for Centimeter and Millimeter Wave Devices," Journal of Lightwave Technology, Vol. 17, No. 11, November 1999
- E.R. Brown, C.D. Parker, E. Yablonovitch, "Radiation Properties of a Planar Antenna on a Photonic Crystal Substrate," J. Opt. Soc. Am B10, 404-407,1993
- O. Vanbesien, J. Danglot, D. Lippens, "A Smart KBand 4-Port Resonant Switch Based on Photonic Band Gap Engineering." 29th European Microwave Conference, Munich 1999.
- J. Carbonell, O. Vanbesien, D. Lippens, "Electric field patterns in finite two-dimen-sional wire photonic lattices," Superlattices and Microstructures, Vol. 22, No. 4, 1997

Acknowledgements

- My advisor, Dr. Ray Kwok
- Bill Shull of Zygo corporation, for helping with the construction of the antenna, and use of his Machine Shop,
- My Supervisor and co-workers at Space Systems Loral, for providing facilities and assistance to make the measurements.
- My Wife and family, for their patience with my seemingly endless project.

Questions?

The effect of Post Diameter

Model Specifications

Parameter	Value
Plate Thickness - Top	0.1 cm
Plate Thickness - Bottom	0.1 cm
Plate Spacing	1.25 cm
Crystal Size	8×8
Post Spacing	$\lambda /(2 \sin \theta)$
Post Radius	0.1 cm
Angle of Incidence	$22^{\circ}-46^{\circ}, 2^{\circ} \mathrm{steps} ; 45^{\circ}$
Solution Frequency	24 GHz
Max. $\Delta \mathrm{S}$	0.01

