Table 4 Binomial Probability Distribution $C_{n, r} p^{r} q^{n-r}$
This table shows the probability of r successes in n independent trials, each with probability of success p.

Table 4 continued

Table 4 continued

Table 4 continued

Table 5 Areas of a Standard Normal Distribution
The table entries represent the area under the standard normal curve from 0 to the specified value of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	. 1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 2257	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	. 2549
0.7	. 2580	. 2611	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621
1.1	. 3643	. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 4406	. 4418	. 4429	. 4441
1.6	. 4452	. 4463	. 4474	. 4484	. 4495	. 4505	. 4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4744	. 4750	. 4756	. 4761	. 4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	:4821	. 4826	:4830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	. 4857
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	. 4962	. 4963	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	. 4987	. 4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	. 4990	. 4990
3.1	. 4990	. 4991	. 4991	. 4991	. 4992	. 4992	. 4992	. 4992	. 4993	. 4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 4997
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998
3.6	. 4998	. 4998	. 4998	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999

For values of z greater than or equal to 3.70 , use 0.4999 to approximate the shaded area under the standard normal curve.

Table 6 Student's t Distribution
Student's t values generated by Minitab Version 9.2

	c	0.750	0.800	0.850	0.900	0.950	0.980	0.990
	a^{\prime}	0.125	0.100	0.075	0.050	0.025	0.010	0.005
	a'	0.250	0.200	0.150	0.100	0.050	0.020	0.010
	d.f.							
	1	2.414	3.078	4.165	6.314	12.706	31.821	63.657
	2	1.604	1.886	2.282	2.920	4.303	6.965	9.925
c is a confidence level:	3	1.423	1.638	1.924	2.353	3.182	4.541	5.841
	4	1.344	1.533	1.778	2.132	2.776	3.747	4.604
	5	1.301	1.476	1.699	2.015	2.571	3.365	4.032
	6	1.273	1.440	1.650	1.943	2.447	3.143	3.707
	7	1.254	1.415	1.617	1.895	2.365	2.998	3.499
	8	1.240	1.397	1.592	1.860	2.306	2.896	3.355
	9	1.230	1.383	1.574	1.833	2.262	2.821	3.250
	10	1.221	1.372	1.559	1.812	2.228	2.764	3.169
	11	1.214	1.363	1.548	1.796	2.201	2.718	3.106
	12	1.209	1.356	1.538	1.782	2.179	2.681	3.055
a^{\prime} is the level of significance for a one-tailed test:	13	1.204	1.350	1.530	1.771	2.160	2.650	3.012
	14	1.200	1.345	1.523	1.761	2.145	2.624	2.977
Fight-tailed test Left-tailed test	15	1.197	1.341	1.517	1.753	2.131	2.602	2.947
	16	1.194	1.337	1.512	1.746	2.120	2.583	2.921
	17	1.191	1.333	1.508	1.740	2.110	2.567	2.898
	18	1.189	1.330	1.504	1.734	2.101	2.552	2.878
	19	1.187	1.328	1.500	1.729	2.093	2.539	2.861
	20	1.185	1.325	1.497	1.725	2.086	2.528	2.845
	21	1.183	1.323	1.494	1.721	2.080	2.518	2.831
	22	1.182	1.321	1.492	1.717	2.074	2.508	2.819
	23	1.180	1.319	1.489	1.714	2.069	2.500	2.807
	24	1.179	1.318	1.487	1.711	2.064	2.492	2.797
	25	1.178	1.316	1.485	1.708	2.060	2.485	2.787
	26	1.177	1.315	1.483	1.706	2.056	2.479	2.779
	27	1.176	1.314	1.482	1.703	2.052	2.473	2.771
$a^{\prime \prime}$ ' is the level of significance for a two-tailed test	28	1.175	1.313	1.480	1.701	2.048	2.467	2.763
	29	1.174	1.311	1.479	1.699	2.045	2.462	2.756
	30	1.173	1.310	1.477	1.697	2.042	2.457	2.750
	35	1.170	1.306	1.472	1.690	2.030	2.438	2.724
	40	1.167	1.303	1.468	1.684	2.021	2.423	2.704
	45	1.165	1.301	1.465	1.679	2.014	2.412	2.690
	50	1.164	1.299	1.462	1.676	2.009	2.403	2.678
	55	1.163	1.297	1.460	1.673	2.004	2.396	2.668
	60	1.162	1.296	1.458	1.671	2.000	2.390	2.660
	90	1.158	1.291	1.452	1.662	1.987	2.369	2.632
	120	1.156	1.289	1.449	1.658	1.980	2.358	2.617
	cc	1.15	1.28	1.44	1.645	1.96	2.33	2.58

Areas of a Standard Normal Distribution
The table entries represent the area under the standard normal curve from 0 to the specified value of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	. 1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 2257	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	. 2549
0.7	. 2580	. 2611	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621
1.1	. 3643	. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 4370	. 4382	. 4394	. 4406	. 4418	. 4429	. 4441
1.6	. 4452	. 4463	. 4474	. 4484	. 4495	. 4505	. 4515	. 4525	. 4535	. 4545
1.7	. 4554	. 4564	. 4573	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4744	. 4750	. 4756	. 4761	. 4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	:4821	. 4826	:4830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	. 4857
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	. 4962	. 4963	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	. 4987	. 4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	. 4990	. 4990
3.1	. 4990	. 4991	. 4991	. 4991	. 4992	. 4992	. 4992	. 4992	. 4993	. 4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 4997
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998
3.6	. 4998	. 4998	. 4998	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999

For values of z greater than or equal to 3.70 , use 0.4999 to approximate the shaded area under the standard normal curve.

Some Levels of Confidence and Their Corresponding Critical Values

Level of Confidence c

0.75	1.15
0.80	1.28
0.85	1.44
0.90	1.645
0.95	1.96
0.99	2.58

Commonly Used Critical Values z_{0} from the Standard Normal Distribution
Type of Test

	0.05	0.01
Left-tailed	-1.645	-2.33
Right-tailed	1.645	2.33
Two-tailed	± 1.96	± 2.58

Table 8 Critical Values of Pearson Product-Moment Correlation Coefficient, r

For a right-tailed test, use a positive r value:

For a left-tailed test, use a negative r value:

For a two-tailed test, use a positive r value and negative r value:

	$a=0.01$		$a=0.05$	
n	one tail	two tails	one tail	two tails
3	1.00	1.00	.99	1.00
4	.98	.99	.90	.95
5	.93	.96	.81	.88
6	.88	.92	.73	.81
7	.83	.87	.67	.75
8	.79	.83	.62	.71
9	.75	.80	.58	.67
10	.72	.76	.54	.63
11	.69	.73	.52	.60
12	.66	.71	.50	.58
13	.63	.68	.48	.53
14	.61	.66	.46	.53
15	.59	.64	.44	.51
16	.57	.62	.42	.50
17	.56	.61	.41	.48
18	.54	.59	.40	.47
19	.53	.58	.39	.46
20	.52	.56	.38	.44
21	.50	.55	.37	.43
22	.49	.54	.36	.42
23	.48	.53	.35	.41
24	.47	.52	.34	.40
25	.46	.51	.34	.40
26	.45	.50	.33	.39
27	.45	.49	.32	.38
28	.44	.48	.32	.37
29	.43	.47	.31	.37
30	.42	.46	.31	.36

Frequently Used Formulas
$n=$ sample size $\quad N=$ population size $\quad f=$ frequency

Chapter 1

Class Width $=\frac{\text { high }- \text { low }}{\text { number of classes }}$ (increase to next integer)
Class Midpoint $=\frac{\text { upperlimit }+ \text { lowerlimit }}{2}$
Lower boundary = lower boundary of previous class + class width

Chapter 2

Sample mean $\bar{X}=\frac{\sum x}{n}$
Population mean $\mu=\frac{\sum x}{N}$
Range $=$ largest data value - smallest data value
Sample standard deviations $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
Computation formula $s=\sqrt{\frac{S S_{x}}{n-1}}$ where

$$
S S_{x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}
$$

Population standard deviation $\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}$
Sample variance s^{2}
Population variance o^{2}
Sample Coefficient of Variation $C V=\frac{s}{\bar{x}} \cdot 100$
Sample mean for grouped data $\bar{x}=\frac{\sum x f}{n}$
Sample standard deviation for grouped data

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2} f}{n-1}}
$$

Chapter 3

Regression and Correlation
In all these formulas
$s s_{x}=\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}$
$S S_{y}=\Sigma y^{2}-\frac{(\Sigma y)^{2}}{n}$
$S S_{x y}=\sum x y-\frac{\left(\sum x\right)\left(\sum y\right)}{n}$

Least squares line $y=a+b x$ where $b=\frac{S S_{x y}}{S S_{x}}$ and

$$
a=\bar{y}-b \bar{x}
$$

Pearson product-moment correlation coefficient

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x} S S_{y}}}
$$

Coefficient of determination $=r^{2}$

Chapter 4

Probability of the complement of event A $P($ not $A)=1-P(A)$
Multiplication rule for independent events $P(A$ and $B)=P(A) \cdot P(B)$
General multiplication rules

$$
\left.\begin{array}{l}
P(A \text { and } B)=P(A) \cdot P(B, \text { given } A
\end{array}\right)
$$

Addition rule for mutually exclusive events $P(A$ or $B)=P(A)+P(B)$
General addition rule

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Permutation rule $P_{n, r}=\frac{n!}{(n-r)!}$
Combination rule $C_{n, r}=\frac{n!}{r!(n-r)!}$

Chapter 5

Mean of a discrete probability distribution $\mu=\Sigma x P(x)$
Standard deviation of a discrete probability distribution

$$
\sigma=\sqrt{\Sigma(x-\mu)^{2} P(x)}
$$

For Binomial Distributions
$r=$ number of successes; $p=$ probability of success; $q=1-p$
Binomial probability distribution $P(r)=\frac{n!}{r!(n-r)!} p^{r} q^{n-r}$
Mean $\mu=n p$
Standard deviation $\sigma=\sqrt{n p q}$

Chapter 6

Raw score $x=z \sigma+\mu$
Standard score $z=\frac{x-\mu}{\sigma}$

Chapter 7

Mean of \bar{x} distribution $\mu_{\bar{x}}=\mu$
Standard deviation of \bar{x} distribution $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$
Standard score for $\bar{x} \quad z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$

Chapter 8

Confidence Interval
for $\mu($ when $n \geq 30)$

$$
\bar{x}-z_{c} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{c} \frac{\sigma}{\sqrt{n}}
$$

for μ (when $n<30$)

$$
\begin{aligned}
& \text { d.f. }=n-1 \\
& \bar{x}-t_{c} \frac{s}{\sqrt{n}}<\mu<\bar{x}+t_{c} \frac{s}{\sqrt{n}}
\end{aligned}
$$

for $p($ when $n p>5$ and $n q>5)$

$$
\hat{p}-z_{c} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}<p<\hat{p}+z_{c} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \text { where } \hat{p}=r / n
$$

Sample Size for Estimating
means $n=\left(\frac{z_{c} \sigma}{E}\right)^{2}$
proportions
$n=p(1-p)\left(\frac{Z_{c}}{E}\right)^{2}$ with preliminary estimate for p $n=\frac{1}{4}\left(\frac{z_{c}}{E}\right)^{2}$ without preliminary estimate for p

Chapter 9

Sample Test Statistics for Tests of Hypotheses
for $\mu($ when $n \geq 30) \quad z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$
for $\mu($ when $n<30) ; t=\frac{\bar{x}-\mu}{s / \sqrt{n}}$ with d.f. $=n-1$
for $p z=\frac{\hat{p}-p}{\sqrt{p q / n}}$ where $q=1-p$

Chapter 10

Sample Test Statistics for Tests of Hypothesis for paired difference $d t=\frac{\bar{d}-\mu_{d}}{S_{d} / \sqrt{n}}$ with d.f. $=n-1$ difference of means large sample

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}=\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

difference of proportions

$$
\begin{aligned}
& z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p} \hat{q}}{n_{1}}+\frac{\hat{p} \hat{q}}{n_{2}}}} \text { where } \hat{p}=\frac{r_{1}+r_{2}}{n_{1}+n_{2}} ; \hat{q}=1-\hat{p} \\
& \hat{p}_{1}=r_{1} / n_{1} ; \hat{p}_{2}=r_{2} / n_{2}
\end{aligned}
$$

Confidence Intervals
for difference of means (when $n_{1} \geq 30$ and $n_{2} \geq 30$)

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right)-z_{2} \sqrt{\frac{\sigma_{1}^{2}}{n_{2}}+\frac{\sigma_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\left(\bar{x}_{1}-\bar{x}_{2}\right) \\
& +z_{2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
\end{aligned}
$$

for difference of proportions

$$
\begin{aligned}
& \text { where } \hat{p}_{1}=r_{1} / \hat{p}_{2}=r_{2} / n_{2} ; \hat{q}_{1}=1-\hat{p}_{1} ; \hat{q}_{2}=1-\hat{p}_{2} \\
& \left(\hat{p}_{1}-\hat{p}_{2}\right)-z_{2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}<\hat{p}_{1}-\hat{p}_{2}<\left(\hat{p}_{1}-\hat{p}_{2}\right)} \\
& +z_{c} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
\end{aligned}
$$

Chapter 11

$x^{2}=\sum \frac{(O-E)^{2}}{E}$ where
$E=\frac{(\text { row total })(\text { column total })}{\text { sample size }}$
Tests of independence d.f. $=(R-1)(C-1)$
Goodness of fit d.f. $=($ number of entries $)-1$
Sample test statistic for $H_{0}: \sigma^{2}=k ; d . f .=n-1$

$$
x^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

Linear Regression
Standard error or estimate $S_{e}=\sqrt{\frac{S S_{y}-b S S_{x y}}{n-2}}$
where $b=\frac{S S_{x y}}{S S_{y}}$
Confidence interval for y
$y_{p}-E<y_{p}+E$ where y_{p} is the predicted y value
for x and
$E=t_{c} S_{e} \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S S_{x}}}$ with d.f. $=n-2$

