Constructing Influence Lines Steven Vukazich
San Jose State University

Why Do We Construct Influence Lines ?

In addition to supporting fixed gravity loads (Dead Load), structures must also support gravity loads that can vary in magnitude and position (Live Loads).

To design the components of a structure, it is important to understand how to place live loads to produce the maximum response for important design quantities (e.g. support reactions, internal shear, bending moment, axial force).

The Influence Line for a response quantity is a tool to help place live loads to find the maximum response

Construction of Influence Lines

The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B . Construct influence lines for:

1. The roller support at C ;
2. The vertical reaction at the fixed support at A :
3. The moment reaction at the fixed support at A

General procedure for the

 construction of influence lines1. Choose a reference coordinate;
2. Choose a sign convention for each diagram;
3. Place a unit, dimensionless load on the structure;
4. Use equilibrium analysis to find the response quantity (e.g. support reaction, internal force) at the position of the unit, dimensionless, load;
5. Move unit load to another position and repeat Step 4;
6. Plot the value of the response quantity versus the position of the unit, dimensionless, load.

Choose Reference Coordinate and Sign Convention

The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B . Construct influence lines for:

1. The roller support at C;
2. The vertical reaction at the fixed support at A:
3. The moment reaction at the fixed support at A

Place Unit Load at $x=0$ (Point A)

Free-body Diagram

Place Unit Load at $x=0$ (Point A)

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

$$
+\sum M_{A}=0 \rightarrow \mathrm{M}_{\mathrm{A}}=0
$$

$$
\oplus \sum M_{B}=0 \rightarrow \mathrm{C}_{\mathrm{y}}=0
$$

$$
\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~A}_{\mathrm{x}}=0
$$

$$
\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}}=0
$$

$$
+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~A}_{\mathrm{y}}=1
$$

$$
+\uparrow \sum F_{y}=0 \quad \longrightarrow \quad \mathrm{~V}_{\mathrm{B}}=0
$$

Place Unit Load at $x=5 \mathrm{~m}$

Place Unit Load at $x=9^{-} \mathrm{m}$

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

$\pm \sum M_{A}=0 \rightarrow \mathrm{M}_{\mathrm{A}}=-9 \mathrm{~m}$
$\pm M_{B}=0 \rightarrow \mathrm{C}_{\mathrm{y}}=0$
$\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~A}_{\mathrm{x}}=0 \longrightarrow \xrightarrow{+} \mathrm{F}_{x}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}}=0$
$+\uparrow \sum F_{y}=0 \rightarrow \mathrm{~A}_{\mathrm{y}}=1$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~V}_{\mathrm{B}}=0$

Place Unit Load at $x=12 \mathrm{~m}$

Place Unit Load at $x=15 \mathrm{~m}$

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

D

$$
\pm \sum M_{B}=0 \rightarrow \mathrm{C}_{\mathrm{y}}=1
$$

$$
\xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~A}_{\mathrm{x}}=0<\mathrm{F}_{\mathrm{B}}=0
$$

$$
+\uparrow \sum F_{y}=0 \quad+\quad \mathrm{A}_{\mathrm{y}}=0 \quad+\uparrow \sum F_{y}=0 \quad \rightarrow \quad \mathrm{~V}_{\mathrm{B}}=0
$$

Place Unit Load at $x=18 \mathrm{~m}$

Plot the Influence Line for C_{y}

Plot the Influence Line for A_{y}

Plot the Influence Line for M_{A}

