Package ‘BayesSPsurv’

January 8, 2021

Type Package
Title Bayesian Spatial Split Population Survival Model
Version 0.1.2
Description Parametric spatial split-population (SP) survival models for clustered event processes. The models account for structural and spatial heterogeneity among “at risk” and “immune” populations, and incorporate time-varying covariates. This package currently implements Weibull, Exponential and Log-logistic forms for the duration component. It also includes functions for a series of diagnostic tests and plots to easily visualize spatial autocorrelation, convergence, and spatial effects. Users can create their own spatial weights matrix based on their units and adjacencies of interest, making the use of these models flexible and broadly applicable to a variety of research areas. Joo et al. (2020) <https://github.com/Nicolas-Schmidt/BayesSPsurv/blob/master/man/figures/SPcure.pdf> describe the estimators included in this package.

License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.6.0)
BugReports https://github.com/Nicolas-Schmidt/BayesSPsurv/issues
URL https://nicolas-schmidt.github.io/BayesSPsurv/
RoxygenNote 7.1.0
LinkingTo Rcpp, RcppArmadillo
Imports MCMCpack, FastGP, stats, Rcpp (>= 1.0.3), coda, dplyr, reshape2, ggplot2, ape
Suggests spduration, countrycode
NeedsCompilation yes
Author Brandon L. Bolte [aut],
Nicolas Schmidt [aut, cre],
Sergio Bejar [aut],
Bumba Mukherjee [aut],
capdist

Gleditsch and Ward Distance data

Description

Dyadic dataset extracted from Gleditsch and Ward (2001). The dataset contains information on the distance between capital cities among independent nation-states.

Usage

data(capdist)

Format

A data frame with 41006 rows and 6 variables

Details

numa COW code – country A.
ida Three letter ISO code – country A.
numb COW code – country B.
idb Three letter ISO code – country B.
kmdist Distance between capital cities in the kilometers.
midist Minimal distance between capital cities in the kilometers.
Source

Description
Markov Chain Monte Carlo (MCMC) to run Bayesian split population survival model with exchangeable frailties.
Returns a summary of a exchangeSPsurv object via summary.mcmc.
Print method for a exchangeSPsurv x.
Returns a plot of a exchangeSPsurv object via plot.mcmc.

Usage
exchangeSPsurv(
 duration,
 immune,
 Y0,
 LY,
 S,
 data,
 N,
 burn,
 thin,
 w = c(1, 1, 1),
 m = 10,
 form = c("Weibull", "exponential", "loglog"),
 prop.var,
 id_WV = unique(data[, S])
)

S3 method for class 'frailtySPsurv'
summary(object, parameter = character(), ...)

S3 method for class 'frailtySPsurv'
print(x, ...)

S3 method for class 'frailtySPsurv'
plot(x, parameter = character(), ...)
Arguments

duration | survival stage equation written in a formula of the form $Y \sim X_1 + X_2 + \ldots$ where Y is duration until failure or censoring.

immune | split stage equation written in a formula of the form $C \sim Z_1 + Z_2 + \ldots$ where C is a binary indicator of immunity.

Y_0 | the elapsed time since inception until the beginning of time period (t-1).

LY | last observation year (coded as 1; 0 otherwise) due to censoring or failure.

S | spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information.

data | data.frame.

N | number of MCMC iterations.

burn | burn-in to be discarded.

thin | thinning to prevent from autocorrelation.

w | size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. c(1,1,1).

m | limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

form | type of parametric model (Weibull, Exponential, or Log-Logistic).

prop.var | proposed variance for Metropolis-Hastings.

id_WV | vector of type character that modifies the colnames of W and V in the model’s result. By default is unique(data[,S]).

object | an object of class frailtySPsurv, the output of exchangeSPsurv.

parameter | one of five parameters of the spatialSPsurv output. Indicate either "betas," "gammas," "rho", "lambda" or "delta".

... | additional parameter.

x | an object of class frailtySPsurv, the output of exchangeSPsurv.

Value

describe exchangeSPsurv returns an object of class "frailtySPsurv".

An "exchangeSPsurv" object has the following elements:

betas | matrix, numeric values of the posterior for each variable in the duration equation.

gamma | matrix, numeric values of the posterior for each variable in the immune equation.

rho | vector, numeric values of rho.

lambda | vector, numeric values of lambda.

delta | vector, numeric values of delta.

W | matrix, numeric values of the posterior for Ws.

V | matrix, numeric values of the posterior for Vs.

X | matrix of X’s variables.
Examples

```r
## 1
walter <- spduration::add_duration(Walter_2015_JCR, "renewed_war",
   unitID = "ccode", tID = "year",
   freq = "year", ongoing = FALSE)

# add S
walter <- spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)

set.seed(123456)

model <-
   exchangeSPsurv(
      duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
         instabl + intensityln + ethfrac + unpko,
      immune = cured ~ fhcompor1 + lgdpl + victory,
      Y0 = 't.0',
      LY = 'lastyear',
      S = 'sp_id',
      data = walter[[1]],
      N = 100,
      burn = 10,
      thin = 10,
      w = c(1,1,1),
      m = 10,
      form = "Weibull",
      prop.var = 1e-05
   )

print(model)

summary(model, parameter = "betas")

# plot(model)
```
2

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
 unitID = "ccode", tID = "year",
 freq = "year", ongoing = FALSE)

walter$S <- rep(x = 1:length(unique(walter$ccode)), times = rle(walter$ccode)$lengths)
country <- countrycode::countrycode(unique(walter$ccode),"gwn","iso3c")

set.seed(123456)
model <-
 exchangeSPsurv(
 duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
 instabl + intensityln + ethfrac + unpko,
 immune = cured ~ fhcompor1 + lgdpl + victory,
 Y0 = 't.0',
 LY = 'lastyear',
 S = 'S',
 data = walter,
 N = 100,
 burn = 10,
 thin = 10,
 w = c(1,1,1),
 m = 10,
 form = "loglog",
 prop.var = 1e-05,
 id_WV = country
)

print(model)

plot_JoinCount

Description

Uses Joint Count tests to assess spatial clustering or dispersion of categorical variables in the data. Negative values indicate positive spatial clustering.

Usage

```r
plot_JoinCount(
    data,
    var_cured = character(),
    var_id = character(),
)```
plot_Moran.I

```
var_time = character(),
n = 1,
t = 1.645,
threshold = 800L
```

Arguments

- **data**: data.
- **var_cured**: binary indicator of immunity.
- **var_id**: ID's unique identifier.
- **var_time**: variable that measures time.
- **n**: number of observation per id.
- **t**: value of the confidence interval.
- **threshold**: distance in kilometers. By default is 800.

Value

A ggplot object

Examples

```r
library(BayesSPsurv)
dataw <- spduration::add_duration(data = BayesSPsurv::Walter_2015_JCR,
y = "renewed_war",
unitID = "ccode",
tID = "year",
freq = "year",
ongoing = FALSE)

plot_Moran.I(data = dataw,
var_cured = "cured",
var_id = "ccode",
var_time = "year",
n = 12)
```

Description

Implements Global Moran I test to evaluate spatial autocorrelation in a units' risk propensity in the data. Positive values indicate spatial clustering of similar values.
Usage

plot_Moran.I(
  data,
  var_duration = character(),
  var_id = character(),
  var_time = character(),
  n = 1,
  t = 1.645,
  threshold = 800L
)

Arguments

data: data.
var_duration: variable that measures duration until censoring or failure.
var_id: ID’s unique identifier.
var_time: variable that measures time.
n: number of observation per id.
t: value of the confidence interval.
threshold: distance in kilometers. By default is 800.

Value

A ggplot object

Examples

library(BayesSPsurv)
dataw <- spduration::add_duration(data = BayesSPsurv::Walter_2015_JCR,  
y = "renewed_war",  
unitID = "ccode",  
tID = "year",  
freq = "year",  
ongoing = FALSE)

plot_Moran.I(data = dataw,  
  var_duration = "duration",  
  var_id = "ccode",  
  var_time = "year",  
  n = 12)
pooledSPsurv

Description

Markov Chain Monte Carlo (MCMC) to run Bayesian split population survival model with no frailties.

Returns a summary of a SPsurv object via summary.mcmc.

Print method for a pooledSPsurv x.

Returns a plot of a pooledSPsurv object via plot.mcmc.

Usage

pooledSPsurv(
  duration,
  immune,
  Y0,
  LY,
  data,
  N,
  burn,
  thin,
  w = c(1, 1, 1),
  m = 10,
  form = c("Weibull", "exponential", "loglog")
)

## S3 method for class 'SPsurv'
summary(object, parameter = character(), ...)

## S3 method for class 'SPsurv'
print(x, ...)

## S3 method for class 'SPsurv'
plot(x, parameter = character(), ...)

Arguments

duration survival stage equation written in a formula of the form Y ~ X1 + X2 + ... where Y is duration until failure or censoring.

immune split stage equation written in a formula of the form C ~ Z1 + Z2 + ... where C is a binary indicator of immunity.

Y0 the elapsed time since inception until the beginning of time period (t-1).

LY last observation year (coded as 1; 0 otherwise) due to censoring or failure.

data data.frame.
pooledSPsurv

N number of MCMC iterations.
burn burn-in to be discarded.
thin thinning to prevent from autocorrelation.
w size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. c(1,1,1).
m limit on steps in the slice sampling. A vector of values for beta, gamma, rho.
form type of parametric model (Weibull, Exponential, or Log-Logistic).
object an object of class SPsurv, the output of pooledSPsurv.
parameter one of Four parameters of the pooledSPsurv output. Indicate either "betas," "gammas", "rho" or "delta".
... additional parameter.
x an object of class SPsurv, the output of pooledSPsurv.

Value

pooledSPsurv returns an object of class "SPsurv".
A "pooledSPsurv" object has the following elements:
betas matrix, numeric values of the posterior for each variable in the duration equation.
gammas matrix, numeric values of the posterior for each variable in the immune equation.
rho vector, numeric values of rho.
delta vector, numeric values of delta.
X matrix of X’s variables.
Z matrix of Z’s variables.
Y vector of ‘Y’.
Y0 vector of ‘Y0’.
C vector of ‘C’.
form character, type of distribution.
call description for the model to be estimated.

list. Empirical mean, standard deviation and quantiles for each variable.

Examples

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "ccode", tID = "year",
freq = "year", ongoing = FALSE)

set.seed(123456)

model <-
spatialSPsurv

pooledSPsurv(
    duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
               instabl + intensityln + ethfrac + unpko,
    immune = cured ~ fhcompor1 + lgdpl + victory,
    Y0 = 't.0',
    LY = 'lastyear',
    data = walter,
    N = 100,
    burn = 10,
    thin = 10,
    w = c(1,1,1),
    m = 10,
    form = "Weibull"
)

print(model)

summary(model, parameter = "betas")

# plot(model)

---

spatialSPsurv  spatialSPsurv

**Description**

Markov Chain Monte Carlo (MCMC) to run time-varying Bayesian split population survival model with spatial frailties.

Returns a summary of a exchangeSPsurv object via `summary.mcmc`.

Print method for a `spatialSPsurv`.

Returns a plot of a spatialSPsurv object via `plot.mcmc`.

**Usage**

spatialSPsurv(
    duration, immune, Y0, LY, S, A, data, N,
burn,
thin,
w = c(1, 1, 1),
m = 10,
form = c("Weibull", "exponential", "loglog"),
prop.var,
id_WV = colnames(A)
)

## S3 method for class 'spatialSPsurv'
summary(object, parameter = character(), ...)

## S3 method for class 'spatialSPsurv'
print(x, ...)

## S3 method for class 'spatialSPsurv'
plot(x, parameter = character(), ...)

Arguments

duration survival stage equation written in a formula of the form Y ~ X1 + X2 + ... where Y is duration until failure or censoring.

immune split stage equation written in a formula of the form C ~ Z1 + Z2 + ... where C is a binary indicator of immunity.

Y0 the elapsed time since inception until the beginning of time period (t-1).

LY last observation year (coded as 1; 0 otherwise) due to censoring or failure.

S spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information.

A an a times a spatial weights matrix where a is the number of unique spatial units (S) load as a separate file.

data data.frame.

N number of MCMC iterations.

burn burn-in to be discarded.

thin thinning to prevent from autocorrelation.

w size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. c(1,1,1).

m limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

form type of parametric model (Weibull, Exponential, or Log-Logistic).

prop.var proposal variance for Metropolis-Hastings.

id_WV vector of type character that modifies the colnames of W and V in the model’s result. By default is colnames(A).

object an object of class spatialSPsurv, the output of spatialSPsurv.

parameter one of five parameters of the spatialSPsurv output. Indicate either "betas," "gamma," "rho", "lambda" or "delta".

... additional parameter.

x an object of class spatialSPsurv, the output of spatialSPsurv.
spatialSPsurv

Value

spatialSPsurv returns an object of class "spatialSPsurv". A "spatialSPsurv" object has the following elements:

- betas: matrix, numeric values of the posterior for each variable in the duration equation.
- gammas: matrix, numeric values of the posterior for each variable in the immune equation.
- rho: vector, numeric values of rho.
- lambda: vector, numeric values of lambda.
- delta: vector, numeric values of delta.
- W: matrix, numeric values of the posterior for Ws.
- V: matrix, numeric values of the posterior for Vs.
- X: matrix of X’s variables.
- Z: matrix of Z’s variables.
- Y: vector of ‘Y’.
- Y0: vector of ‘Y0’.
- C: vector of ‘C’.
- S: vector of ‘S’.
- form: character, type of distribution.
- call: description for the model to be estimated.

Examples

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "ccode", tID = "year",
freq = "year", ongoing = FALSE)

walter <- spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)

set.seed(123456)

model <-
  spatialSPsurv(
    duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
    instabl + intensityln + ethfrac + unpko,
    immune = cured ~ fhcompor1 + lgdpl + victory,
    Y0 = 't.0',
    LY = 'lastyear',
    S = 'sp_id',
    data = walter[[1]],
    N = 100,
    burn = 10,
spatial_SA

thin = 10,
w = c(1,1,1),
m = 10,
form = "Weibull",
prop.var = 1e-05,
A = walter[[2]]
)

print(model)

summary(model, parameter = "betas")

# plot(model)

spatial_SA

Description
Generates a spatial weights matrix (A) and sp_id (S). User defines units and adjacencies.

Usage
spatial_SA(data, var_ccode, threshold = 800L)

Arguments
data data.frame.
var_ccode name of the variable that contains the country codes.
threshold distance in kilometers. By default is 800.

Value
list. Contains database with variable sp_id (S) and matrix A.

Examples
walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "ccode",
tID = "year",
freq = "year",
ongoing = FALSE)

walter <- spatial_SA(data = walter,
var_ccode = "ccode",
threshold = 800L)
Description

Calculates the deviance information criterion (DIC) and Log-likelihood for fitted model outputs of pooled, exchangeable, and spatial Split Population survival models for which a log-likelihood can be obtained using the formula $\text{DIC} = -2 \times (L - P)$, where $L$ is the log likelihood of the data given the posterior means of the parameter and $P$ is the estimate of the effective number of parameters in the model.

Usage

\text{SPstats}(\text{object})

Arguments

\text{object} \\
An object of the output of pooled, exchangeable, or spatial Split Population survival model.

Value

List.

Description

Subsetted version of a time-series-cross-sectional (TSCS) dataset used in Walter (2015). It has data on duration of post-war peace as well as information on other relevant economic and political data.

Usage

data(Walter_2015_JCR)

Format

A data frame with 1237 rows and 12 variables
Details

- **year** year.
- **lastyear** last observation year.
- **renewed_war** binary variable coded as 1 if the war was fought.
- **fhcompor1** Freedom House civil liberties index.
- **lgdpl** log of per capita GDP in 2005 dollars.
- **comprehensive** combatants signed comprehensive peace agreement.
- **victory** end of previous war with outright victory.
- **instabl** dummy that indicates whether there was a positive or negative change in the Polity 2 score in the previous country-year.
- **intensityln** deaths per year – logged.
- **ethfrac** index of ethnic fractionalization.
- **unpko** number of UN peacekeepers on the ground.
- **ccode** country code.

Source

Index

* datasets
  capdist, 2
  Walter_2015_JCR, 15
  capdist, 2
  exchangeSPsurv, 3, 3, 4
  plot.frailtySPsurv (exchangeSPsurv), 3
  plot.mcmc, 3, 9, 11
  plot.spatialSPsurv (spatialSPsurv), 11
  plot.SPsurv (pooledSPsurv), 9
  plot.JoinCount, 6
  plot.Moran.I, 7
  pooledSPsurv, 9, 9, 10
  print.frailtySPsurv (exchangeSPsurv), 3
  print.spatialSPsurv (spatialSPsurv), 11
  print.SPsurv (pooledSPsurv), 9
  spatial_SA, 14
  spatialSPsurv, 4, 11, 11, 12
  SPstats, 15
  summary.frailtySPsurv (exchangeSPsurv), 3
  summary.mcmc, 3, 9, 11
  summary.spatialSPsurv (spatialSPsurv), 11
  summary.SPsurv (pooledSPsurv), 9
  Walter_2015_JCR, 15