1. A Linear Programming Approach to Dynamical Equivalence, Linear Conjugacy, and the Deficiency One Theorem, J. Math. Chem.54(8):1612-1631, 2016. [ArXiv]
  2. A computational approach to persistence, permanence, and endotacticity of biochemical reaction networks (w/ C. Pantea and P. Donnell), J. Math. Biol., 72(1):467-498, 2016. [ArXiv]
  3. A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77(6):1065-1100, 2015. [ArXiv]
  4. Stochastic analysis of chemical reaction networks with absolute concentration robustness (w/ D. Anderson and G. Enciso), J. R. Soc. Interface, 11(93), 20130943, 2014. [ArXiv]
  5. Translated chemical reaction networks, Bull. Math. Biol. 76(5), 1081-1116,2014. [ArXiv]
  6. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency (w/ D. Siegel and G. Szederkenyi), Math. Biosci., 241(1), 88-98, 2013. [ArXiv]
  7. Dynamical equivalence and linear conjugacy of chemical reaction networks: new results and methods (w/ D. Siegel and G. Szederkenyi), MATCH Commun. Math. Comput. Chem., 68(2), 443, 2012. [ArXiv]
  8. A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks (w/ D. Siegel and G. Szederkenyi), J. Math. Chem., 50(1), 274-288, 2012. [ArXiv]
  9. Weak dynamical non-emptiability and persistence of chemical kinetics systems (w/ D. Siegel), SIAM J. Appl. Math., 714), 1263-1279, 2011. [ArXiv]
  10. Linear conjugacy of chemical reaction networks (w/ D. Siegel), J. Math. Chem., 49(7), 1263-1282, 2011. [ArXiv]
  11. A stratum approach to global stability of complex balanced systems (w/ D. Siegel), Dyn. Syst., 26(2), 125-146, 2011. [ArXiv]
  12. Equilibria and periodic solutions of projected dynamical systems on sets with corners(w/ M.G. Cojocaru), Aust. J. Math. Anal. Appl., 5(2), 4-12, 2008.
  13. Dynamics of vaccination strategies via projected dynamical systems (w/ M.G. Cojocaru and C. Bauch), Bull. Math. Biol., 69(5), 1453-1476, 2007.